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A “many-letter” sequence model of random heteropolymers is introduced and studied. We
examine the case where there is a tendency for phase separation with respect to certain types of
interactions as in the case of hydrophobic and hydrophyllic interactions in proteins. It is shown
that a freezing transition to a state where a few conformations are thermodynamically dominant
can prevent microphase separation even for flexible chains if enough letters are used in the sequence.

The number of these letters is independent of the length of the chain.

It is also found that a

microphase separation with respect to a stronger type of interaction prevents microphase separation

with respect to any other weaker type.

PACS number(s): 61.41.4+e, 87.15.Da, 64.60.Cn, 64.60.Kw

I. INTRODUCTION

A protein in living cells has a unique three-dimensional
conformation which is determined by the sequence of the
amino acids from which it is formed [1]. Understand-
ing the encoding of this information in the sequence and
predicting the conformation of the protein based on this
information is the most intriguing problem of molecular
biology. Random heteropolymers have been studied ex-
tensively as models for proteins in order to understand
which features of the protein behavior come from general
properties of polymeric structure and heterogeneity and
which ones are due to evolutionary selection [2].

The first approach to this problem introduced the
independent-interaction model [3-6] in which the poly-
meric Hamiltonian contains a random quenched set of
two-body interaction virial coefficients B;; for monomers
1,7 which are in contact. The B;; interactions were taken
as independent random variables following a Gauss-
ian distribution. This study showed that below a given
temperature the system undergoes a phase transition to
a glasslike phase, where only few low-energy conforma-
tions are thermodynamically dominant. In these low-
energy states the conformation of the polymer is frozen
to microscopic scale and therefore this phase is called
frozen phase. It was shown that the conformations have
no structural overlap with each other and consequently
their energies are independent [4,7]. Therefore the sys-
tem can be accurately described by the random-energy
model (REM) of Derrida [8,9].

The heteropolymer problem, however, should be de-
scribed by a random sequence, i.e., a set of random val-
ues {o;} characteristic for each monomer. This model
will be referred to as the sequence model [10-13]. In this
model the interaction potentials B;; are correlated. The
sequence model seems to be more realistic for the de-
scription of a real heteropolymer which consists of a ran-
dom sequence of monomers. In the case of a “two-letter”
random copolymer, the sequence model is the only one
that can be used to describe the problem. In this model
the random values {o;} take only the values 1. In the
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two-letter model, when similar kinds of monomers attract
each other and different ones repel each other, there is an
energetic preference for microphase separation between
monomers of different sign [11].

This model was recently solved [14] and the same fea-
tures of the frozen phase were obtained. The sequence
model gives additional information about microphase
separation. It was shown in [14] that, for a stiff chain, mi-
crophase separation is not possible at all since the freez-
ing transition temperature is high enough and the sys-
tem undergoes a transition into the frozen phase, before
microphase separation can be reached. Below this tem-
perature the conformation does not change with temper-
ature and therefore the system does not reach the phase
separated state. If the chain is flexible enough, the freez-
ing temperature 7T, is suppressed below the microphase
transition temperature T, and freezing occurs at a lower
temperature on a background of phase separation.

Proteins, however, are consisted of 20 amino acids, re-
ferred to as letters, and the possible number of differ-
ent pairwise interactions is 210. For that reason it was
originally argued that the independent-interaction model
describes the protein problem sufficiently. However, the
phase separation features revealed by the sequence model
give a much richer phase diagram and it is interesting to
retain them. The sequence Hamiltonian solved in [14]
gives a clear picture for the two-letter problem, but flex-
ibility plays a crucial role in the model and is difficult
to be monitored or defined on a numerical lattice model
[1,15-17], for example. If the flexibility is very large it
can reduce the freezing temperature to such an extent
that freezing may not be observed for kinetic reasons.

In the present work we study the many-letter sequence
model, introduced by Garel and Orland [10], by assigning
to each monomer i a set of p generalized charges {o}'}},_,
with every o} taking values +1 with equal probabilities.
Then we have 2P possible letters for each monomer. By
increasing the number of letters we can increase the het-
erogeneity of the system and the freezing temperature. It
can be seen immediately that this model has the certain
advantage of introducing different types of interactions,
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the strength of which can be modified independently. It
can therefore be used to reflect the fact that different
features of amino acid interactions are not equally im-
portant. It has been suggested [18], for example, that
hydrophobicity is the most important feature in proteins
and hence proteins should be treated effectively as a two-
letter polymer.

In what concerns the freezing transition we find that
the number of charges necessary to lead to a freezing
transition is of order unity and independent of the length
of the chain. The possibility of phase separation of more
than one charge is also examined and it is found that the
separation transition of the strongest charge, i.e., with
the strongest tendency for phase separation, which occurs
first, prevents the phase separation with respect to any
other weaker charge.

In Sec. II the many-letter model is introduced and a
qualitative discussion of the order parameters related to
freezing and microphase separation is given. In Sec. III
the effect of heterogeneity on the microphase separation
of one charge is discussed. In Sec. IV the effect of phase
separation of charge on the phase separation of an other
is described. In Sec. V a general discussion of the re-
sults is given including the effect of fluctuations to the
microphase separation transition.

II. THE MODEL AND DEFINITION
OF THE ORDER PARAMETERS

We consider a random heteropolymer where every
monomer ¢ in the quenched sequence has a set of p gen-
eralized charges {o}'}?_, with each o} taking values +1
with equal probabilities. Therefore, we have 2P possible
letters for each monomer. The self-interactions between
monomers is described by the Hamiltonian

H = ZB,;J'U(!',; - I'J'),

i’j

(2.1)

where the conformation is given in terms of the coordi-
nates of its monomers {r;} and U(r; —r;) describes a
short-range potential. The two-body interaction virial
coefficient is given by

P
B,;J' = Z X“O':-‘U;-‘, (2.2)
pu=1

where x,, is the Flory parameter for interactions between
two charges of the same kind u. In this problem we
consider x,, < 0, so that positive charges of each kind
will attract positive charges of the same kind and repel
negative ones, etc.

We will also assume that there is an overall attraction
constant in the two-body term, as well as a three-body re-
pulsion. These two interactions have not been explicitly
included in the Hamiltonian. The effect of these terms is
to lead the polymer into a compact globular state with
constant density [19]. In our study we keep only the
terms related with heteropolymeric effects.

In this system, attraction between charges of each kind

p with the same sign generates an energetic preference for
microphase separation. As has been discussed in previous
studies [10,11], the order parameter which describes this
phase separation is

mu(R) = }: o’6(r® — R). (2.3)

In a system with one charge, i.e., the usual two-letter
copolymer, this energetic tendency for phase separation
is influenced by quenched disorder in the polymeric se-
quence. From our study of the one-charge problem [14]
we know that quenched disorder can influence the system
in two ways.

(i) If the polymer chain is flexible it can undergo a mi-
crophase separation transition at some temperature T,,
described by a mean field theory for the order parameter
defined in Eq. (2.3). At this stage, quenched disorder
simply suppresses phase separation in large scales. At
a lower temperature T., the system undergoes a phase
transition into a phase where, due to frustration, only a
few frozen conformations are thermodynamically impor-
tant [7]. Below this temperature the free energy of the
chain does not depend on temperature since the system
has lost all its entropy.

(ii) If the polymer chain is stiff the transition into the
frozen phase occurs at high enough temperature, so that
microphase separation is not observed. Freezing prevents
microphase separation only in stiff chains where it occurs
at a temperature higher than the microphase separation
transition temperature.

One simple way to approach the problem with many
charges is to investigate the effect of the energetic prefer-
ences of additional charges on the microphase transition
of one charge. For this purpose we can write the two-
body term of Eq. (2.2) as

r—1
— v, PP o
Bij = x10;0; + X2 E 0;0;,
p=1

(2.4)

where we assume that the tendency for phase separation
of the designated pth charge is much stronger than of
the other charges. For large values of p this model is
equivalent to

Bij = x10:0; + x2BY;, (2.5)
where B?J- takes independent random values following, for
example, a Gaussian distribution [5]. In this case we have
one charge plus noise. The sign of x» is not important
since the same approach developed in Sec. III can be
modified for x > 0. The effect of noise is described
by an extra order parameter Q,g, which appears in the
course of the replica calculation in Sec. III, defined as

Qap(R1 —Rz) =) 8(rF —Ry)6(rf —Ry).  (2.6)
From this definition we see that

/ dR1Qus(R1, Rs) = ps(Rs). (2.7)
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Since we are considering the case of a collapsed chain
of constant density throughout the globule, the density
must be independent of position. Therefore, Eq. (2.7)
implies that Q.5(R1,R2) = Qos(R;1 — R2). This argu-
ment also applies to the case of an incompressible melt.
This order parameter shows the average structural
overlap between two conformations and has been used to
describe the transition into the frozen phase mentioned
above [4,5]. For the heteropolymer models studied before
it was found that the local minima of the potential sur-
face of the system, usually called pure states, correspond
to entirely different conformations. It was shown that

Qup = { p6(Ry; — Ry) for ,3 in the same state
af —

0 for a, B in different states.

(2.8)

In order to demonstrate how this order parameter de-
scribes the freezing transition it is useful to define [20,21]
the probability P(q) that any two conformations have an
overlap ¢ as

P(q) = ZPQPB(S(QQﬁ -q),
af

(2.9)

where P, Pz are the Boltzmann factors for conforma-
tions a and (. At high temperatures, P(q) = §(q) since
all structurally different states are accessible through
thermal fluctuations. As the temperature is lowered,
low energy states become more important. Then, it was
shown that the probability P(q) changes into

P(q) = z06(q) + (1 — z9)d(qg — 1), (2.10)

where the Boltzmann factors of the different states satisfy
the relation

The parameter z¢ is unity above the freezing transition
temperature T, and goes as o = T/T, below T.. Given
the fact that > P, = 1, it is seen that the smaller the
temperature, i.e., the smaller the value of z¢, the fewer

(2.11)

(Z™)av = </’Drf’g(rf‘+1 —r{)exp {Z Z

a  1,j

p—1
(blafa;? +> bzag‘a;.*) U(xg — r;")] >
p=1
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the thermodynamically dominant conformations. We see
therefore how the Q order parameter monitors the freez-
ing transition to a phase where the number of the thermo-
dynamically dominant conformations are of order unity
and their conformations are frozen to microscopic scale.

To return to the many-charge problem formulated ac-
cording to Eq. (2.4), we will assume that the polymeric
chain is flexible enough to allow microphase separation of
the designated pth charge in the absence of other charges.
We will calculate the effect of the extra charges on the
microphase transition through their tendency to lead into
freezing. This is described in Sec. III.

However, if the tendency of the additional charges to
phase separation is comparable to that of the designated
charge, we need to examine the effect of the microphase
transition of one charge on the microphase transition of
the other. This is described in Sec. IV.

The average over disorder is taken with the aid of the
replica trick [22], which consists in taking the average
of the logarithm of the partition function through the
formula

(Zn>av -1
n '

(InZ)ay = lim (2.12)
n—0
The order parameter Q,g appears formally as the over-
lap between conformations of different replicas. Due to
the well known analogy of P(q) introduced in Eq. (2.9)
referring to replicas and pure states [23], this order pa-
rameter obtains the physical meaning explained above.

III. EFFECT OF NOISE CHARGES
ON A STRONGLY SEPARATING CHARGE

In this section we will consider that a designated
charge, such as hydrophobicity, has a much stronger ten-
dency for phase separation than the other charges, as
implied by Eq. (2.4). We will also consider a chain flex-
ible enough to allow phase separation of the designated
charge in the absence of other charges by suppressing the
freezing temperature of the one-charge system at very low
temperatures.

By applying the replica trick, we consider the aver-
age of the product of n identical copies of the partition
function

av

where g(r$, , — r{) is the Gaussian polymeric term [19], often called the elastic term given by

(3.2)

a a 1
g(ri+1 - I ) = (27”12)3/2 exp l:_ 2a2

and by = —x1/T,b2 = —x2/T, with by > b,.
The n-replica partition function can be rewritten as

(riy — r?)z]
b
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< [Przaez, -2 [ DRAR) exp [—% Y [wipz@p+ Y [aren®) Y orees - R)]

xexp[ 4b222/daw(n) +ZZ/dR\IJ"(R)Za“6 R]> , (3.3)

a upu=l1

by performing a Hubbard-Stratonovich transformation [24] with respect to the variable
> oib(r - R) (3.4)

and also taking U(r§ —r$) as a § function. The fields ¥4 (R) have been introduced formally as integration variables.
We perform the disorder average separately for the designated-charge part and the noise-charge part. We call

I = / Dm2 (R) exp{—b1 ) / ARER)P +5, 3 / dRm?(R) 3 oF8(r - R)}, (3.5)

where we have rescaled the integration variable m, = (1/2b)¥,. By performing the disorder average and keeping
only the Gaussian term, we get

(I)av = / DmZ(R) exp{—bl[m‘;(R)]2+b"1’Z / dR1dR,m& (Ry)m?, (RZ)ZJ —Ry)S(rf - R2)} (3.6)
.8

The noise charge part is similarly transformed into

{I2)ay = H /Dmg(R exp{ —by[m#(R))? +bzz/dedRzmu(Rl)m#(Rz)ZJ —Ry)6(r? — Rz)} (3.7

We recognize in this formula the order parameter Q.3 as defined in Eq. (2.6). By taking into account the translational
invariance condition as explained in Eq. (2.7) we rewrite Eq. (3.7) as

<12>,w_11 ] DQup (k) / Dm"(k)exp[ DD [b28ap — b3Qup(k))mk (k)mis(— k)]

B k#0

x§ (Qas(k) =) ekt "5)) : (3.8)

i

where k is the wave vector. We consider only nonzero wave vectors because in a system with equal probability for
positive and negative signs of the same charge m(k = 0) = 0.

Since there is, practically, no tendency for phase separation with respect to the p — 1 weak charges, we can
integrate out the m# (k) variable, which is not a meaningful parameter for the system. After integration of m# (k)
and introducing the integral representation of the é function we obtain

(b = [ DQup@) exp{ ~0 = 1) Y- afdet Pop(1)}

k#0

/ DY op(k) exp{ (P-1)b3Y E[ ap(K)Qap(k) + Zvaﬁ(k)e*(' ]} (3.9)

a, k#0

with the matrix elements given by P,g(k) = b28,5 — b2Qas (k).
We need to take the conformational (thermal) average. By combining the conformation dependent part of the

results given in Egs. (3.6) and (3.9), the conformational average resembles the partition function of a polymer in an
external field [19]

Z, = /g(rg+1 - r;*)eXp[ - 1)b2220,,ﬁ rf =)+ 833> mE(rg)mh (rf) ] (3.10)

aB i
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This can be calculated by a high temperature expansion of the [mP]? term [25], which is equivalent to a perturbation
theory around a compact globule with ground state dominance, as has been shown before for the single charge problem
[11]. We can now combine all this into one expression for the total nth power of the partition function

(2% = [ D2 (0DQus (Do () exp] ~(p 1) T lnfdet P 1)) — by mz 1)
k#0

X exp{ —(p —1)b2 Z > [ﬁag(k)Qaﬁ(k) +1In Za} }

o, k#0

xexp{bfzz Z mg(kl)mg(k2)<ei(k1r;‘+k2r§’)>19
B

i ki,k2#0
a,....8 5 ki,... ke #0

The average ( )y denotes the conformational average with
respect to a Gaussian chain in external field 9 and —In Zy
the corresponding free energy. The value of the fields
m,Q,Y, has to be determined by self-consistent equa-
tions. At this point we notice that if we consider the
self-consistent equation 0f/8Q = 0, the differentiation
eliminates the m-dependent part. A solution can be ob-
tained when the scale R; of the ¢ field is equal to the
scale of the @ field. Then the resulting equation is sim-
ilar to the one of the random heteropolymer discussed
previously in detail [14] and the arguments for the replica
symmetry breaking pattern according to Eq. (2.8) hold
true.

As a result there is no effect of the ¢ field above the
freezing point. Then the expression in Eq. (3.11) is eval-
uated and we obtain the intensive free energy per replica

In(1 —byzo) s

fin=p-1)—" -
b1 Y[ (brao - )] (m (1)
k#0
zgbi [mP (k1))?[mP (ko))
BERR i

The surface tension term c?k? has been eliminated by
taking the potential as a precise é function and is reintro-
duced here to prevent phase separation with large wave
numbers. The parameter z¢ is the size of the Parisi diag-
onal block [26] and s ~ In(v/a®) is the flexibility param-
eter. The density of the incompressible system has been
taken to be constant and equal to unity. From Eq. (3.12)
we see immediately that phase separation is possible only
when b,zo > 1 and bazg < 1. Since the tendency of the
pth charge to phase separate is much stronger than the
tendency of the noise charges b; > bz, the transition is
possible. By performing the mean field with respect to
m we find
f/n -~ bl(bl.‘llo —31)30,2 _ i + (p _ 1)111(1 - bng) .
(b]_.’ro) 02 o o

(3.13)

Optimization with respect to zo gives

i o B8 v
+§ Z Z Z mﬂ(kl)mg(kg)m’;(ks)mg(k‘l)<et(km +kar; +karj+k4rf)>19}. (3'11)

|

2 1 \? -1
3% (1 - 45— P Dbazo
c2 blmo 1—1)2130

—(p—1)In(1 — bazo) = 0. (3.14)

First we observe that for p = 1 the freezing transition
temperature at which o = 1 is T, = [x1](1 — s¥/2¢c/a).
as found in [14]. This indicates the possibility that at
some finite flexibility 7. becomes zero. The many-charge
model can change this behavior.

We consider the case of large flexibility s and also
bizg > 1 and byzo < 1. In this case we can ignore the
first term in Eq. (3.14) and expand the logarithm to low-
est nonvanishing order for byxo. For large values of p we
can replace p — 1 by p to obtain

byxo = (s/p)Y/%. (3.15)
Since by = |x2|/T, then zo = T/T., where

T. = |x2l(p/s)"*.

For any temperature above T, the parameter z¢ is equal
to unity. We see that the additional noise charges raise
the freezing temperature by increasing the total hetero-
geneity of the system. This can be interpreted as a
rescaling of the flexibility parameter. The increase of the
freezing temperature is basically due to the existence of
strong enough noise in the model described by Eq. (2.5).
Then the freezing temperature can be raised above the
microphase separation temperature 7, even for flexible
chains. When T, > T, the system freezes at a micro-
scopic scale and does not depend on temperature. There-
fore microphase separation is prevented.

We see that the noise charges have no effect on the
microphase transition temperature or wavelength or am-
plitude. The absence of any effect of the noise on the
phase separation, as long as T. < Ty, is due to the mean
field treatment of the freezing order parameter Q, accord-
ing to which, above freezing, we set the field J equal to
zero. We performed another calculation where we treat
the noise charges as perturbation. Even in this treatment
we found that the noise has no effect on the [m?)? term in
free energy and therefore does not influence the transition

(3.16)
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FIG. 1. Phase diagram of the many-charge model. It is
assumed that for p = 1 the chain is very flexible to sup-
press the freezing temperature at T = 0. The freezing tem-
perature T is plotted against the number of charges. The
microphase transition temperature T, is independent of the
number of charges. Region I is the uniform homopolymeric
globule without phase separation or definite conformation. In
region II there is microphase separation without definite con-
formation. In region III there is microphase separation and
definite conformation. In region IV there is definite conforma-
tion, but freezing to this conformation occurs above T, and
it prevents phase separation.

temperature within the mean field framework for m?. By
considering contributing diagrams in all orders we found
that it does not affect the wavelength either, but it only
alters the amplitude of the phase separation. This can
be understood from the fact that the second-order term
is a one-replica term and the relevant perturbation cor-
rections are of the form (§(r; — r;)), which is an overall
compression that has no effect since we are examining
the incompressible globule or melt. On the basis of these
results we can propose the phase diagram of Fig. 1 for the
multiple charge heteropolymer Hamiltonian described by
Egs. (2.1) and (2.5).

We notice that our treatment of the many-charge prob-
lem in this section resembles formally, up to Eq. (3.11),
the study of Amit et al. [27,28] of the effect of extensively
many spin patterns on the retrieval ability of a neural net-
work. It is important to distinguish the different physics
of the two systems. In the neural network there is a glass
phase only if the number of patterns scale as p = aN,
where « is a proportionality constant. In the polymer
system, due to the three-dimensional space dependence
of the order parameter, the additional space integration
creates a volume factor and the noise term contributes
to the free energy when the number of charges is of order
unity. Therefore, in the polymer system the existence
of additional charges of order unity can lead the system
to a glasslike phase, which we call frozen phase, and pre-
vent the system from “retrieving” microphase separation.
Hence we arrive at the conclusion that additional charges
increase the tendency of even flexible chains to undergo
a freezing transition and the critical number of charges
required to cause freezing is independent of the length of
the chain.

IV. EFFECT OF THE PHASE SEPARATION OF
ONE CHARGE ON THE PHASE SEPARATION
OF ANOTHER

We will now consider very flexible chains for which,
as shown in [14], phase separation occurs before freezing
(this corresponds to the “MPS” domain of the phase di-
agram, Fig. 4 of [14]). In this regime there is no replica
symmetry breaking and the relevant order parameter is
the partial density m, while the two-replica order param-
eter @ is irrelevant.

We examine the case where the charges have compa-
rable tendency for microphase separation. In that case
we need to perform a mean field calculation for all mi-
crophase order parameters. We consider for simplicity
two charges:

Bz] - Xla U +X20'2 2 (41)

Then the free energy of the system is given by

f= Z[ ?k? — (by — 1/4)]m1(k)
k#0
+ Z[ 2k _ (by — l/4)]m2(k)
k#£0

1 —
1Y 02 413) [mi(ka)md (ko)
ko kg #0

+m3 (ka)m3 (kp) + 2m7 (ka)m3 (ks)]-

One solution of this is my(k) = m;A(k — k;) and
mz(k) = m2A(k — k), from which

(4.2)

= (¢} — by)m] + (c’k] — bz)m]

+l(m‘11 + m} N mim? )
a?k?  a?k?  a2(k? 4+ K2)

(4.3)

where we have set I;l =b;—1/4 and l~12 = by —1/4. If the
two charges have exactly the same tendency for phase
separation b; = by, then we can replace m? + m2 = m?
and get the results of the single charge phase separation
for the composite parameter m. In this case the existence
of more than one charge only increases the degeneracy of
this state.

More interesting appears the case where the two ten-
dencies differ and the one phase transition precedes the
other. Assume that b; > b,, so that the phase separation
of the charge “1” precedes at temperature T;. At this
point the equilibrium value for the second transition is
mgy = 0. Then the mean field values for m;, k, are found

(4.4)

and the transition is third order.

In the absence of the first phase separation a further
decrease of temperature leads to a transition with respect
to my at temperature T>. However, the existence of m; #
0 changes the picture dramatically. If we assume that the
value of my, k; is given by Eq. (4.4), substitution of this
into Eq. (4.3) gives
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n 1+ (3¢2/b1)k; 4a%k;
The minimum for the second-order term occurs for
b

and the second-order term coefficient becomes l~)1 —l;z > 0,
so the transition is impossible. This is due to this extra
coupling term in Eq. (4.3), which is due to the polymeric
effect and the quenched disorder in the sequence.

This result means that phase separation of a stronger
charge prevents phase separation of weaker charges. This
can be understood qualitatively by the fact that the wave
number of the microphase separation is proportional to
the strength of the charge, as can be seen from Eq. (4.4).
The microphase separation of weaker charges occurs at
lower temperature at smaller wave numbers, that is, at
larger scales. In that case, the second phase separa-
tion would involve reorganization of the domains of the
stronger charge and therefore loss of free energy.

V. DISCUSSION

In the present work we have solved the many-letter het-
eropolymer where different interaction types are allowed
for every monomer. These interaction types are called
charges. We consider the case of one charge having a
strong tendency for phase separation, as, for example,
in the case of hydrophobicity. The quenched disorder
in the polymeric sequence introduces frustrations which
can lead the system to a frozen state. However, in the
absence of other charges it is known that flexibility can
suppress the freezing temperature significantly. Intro-
ducing additional charges, which reflect other features of
the monomers, we increase the heterogeneity of the sys-
tem and therefore the frustrations and the tendency for
freezing. It was shown here that the introduction of dif-
ferent charges in this model corresponds directly to the
use of more letters of the protein alphabet and the use
of these extra letters raises the freezing temperature by
effectively rescaling the flexibility parameter.

Moreover, it was shown that the number of these let-
ters is independent of the length of the polymer. This
signifies that the number of letters that will lead to freez-
ing in proteins is the same for proteins with 100 as well
as for proteins with 500 amino acids. This result verifies
the universality of the genetic code and is obtained by a
model that considers only the heteropolymeric features
of proteins without taking into account the evolutionary
selection of sequences.

The discussion of microphase separation throughout
this work and previously was based on a mean field the-
ory for the order parameter m(k). However, in an early
study by Dobrynin and Erukhimovich [29] it was pointed
out that, considering one-loop corrections due to fluctu-
ations, the renormalized Green’s function becomes of the
form G~1(k) = (k — ko)% + 7 and resembles the Green’s
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function of the Hamiltonian of the weak crystallization
theory [30-32]. In his seminal work in weak crystalliza-
tion theory [30] Brazovskii showed that in certain systems
a continuous order transition of the type of the Landau
Hamiltonian is impossible. Fluctuations stabilize the dis-
ordered phase and prevent the renormalized mass from
becoming zero except for T = 0. A phase transition,
however, is possible because the ordered phase becomes
first locally stable and eventually globally stable so that
the phase transition is of first order. Brazovskii showed
that this transition occurs at some large enough value of
the renormalized mass coefficient 7, so that the one-loop
approximation is valid.

The Brazovskii theory, originally constructed to de-
scribe the nonuniform phase of the cholesteric liquid crys-
tal [33,34], has very important implications on the the-
ory of microphase separation of copolymers. In Leibler’s
mean field theory of periodic block copolymers [35] the
Landau Hamiltonian has exactly the form considered by
Brazovskii. This was pointed out by Fredrickson and
Helfand [36], who calculated the changes in Leibler’s
phase diagram, by mapping Leibler’s Hamiltonian onto
Brazovskii’s Hamiltonian. Later, Dobrynin and Erukhi-
movich [37] reproduced the results of Fredrickson and
Helfand for the block copolymer introducing a variational
method.

In the original study of the random copolymer in the
context of fluctuational theory Dobrynin and Erukhi-
movich [29] speculated that the system belongs to the
Brazovskii universality class and should undergo a first-
order transition instead of the continuous third-order
transition described by mean field. They did not, how-
ever, consider a detailed study of the system due to fluc-
tuations. The same authors recently claimed [38] that
application of their variational method to the random
copolymer shows that this system does not undergo a
phase transition at all and this result probably reflects
also the behavior of the correlated random copolymer
[25,39,40]. If this is correct and the ordered phase never
becomes globally stable, as opposed to the mechanism of
the Brazovskii theory, the one-loop approximation breaks
down. This happens because one can reduce temperature
further until, much before T' = 0, higher-loop corrections
become more divergent than the one loop and a series
of divergent diagrams with interchanging sign has to be
summed. So it seems that absolute loss of stability of the
disordered phase when r — 0 is, in principle, possible.
This case was mentioned by Brazovskii, but it was not
studied. In any case, the results of a variational method
for so delicate questions is not to be trusted and a direct
calculation of the free energy of the ordered phase must
be performed. This work is under current investigation.

It should be mentioned that if the transition occurs
through the Brazovskii first-order mechanism all the re-
sults presented in Sec. IV are valid, although the study
assumed a continuous transition, since in the first-order
mechanism the mass coeficient of the bare Green’s func-
tion has to become negative also. This was shown in Sec.
IV to be impossible for the weak charge in the presence
of phase separation for the strong charge. This effect can
have interesting applications even for periodic sequences
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with two charges (four letters) or one periodic and one
random charge. The charges can be chosen so that se-
lection of the appropriate experimental conditions can
activate or deactivate one charge or the other and lead
to phase separation with respect to the scale of the one
charge preventing the separation of the other and vice
versa.
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